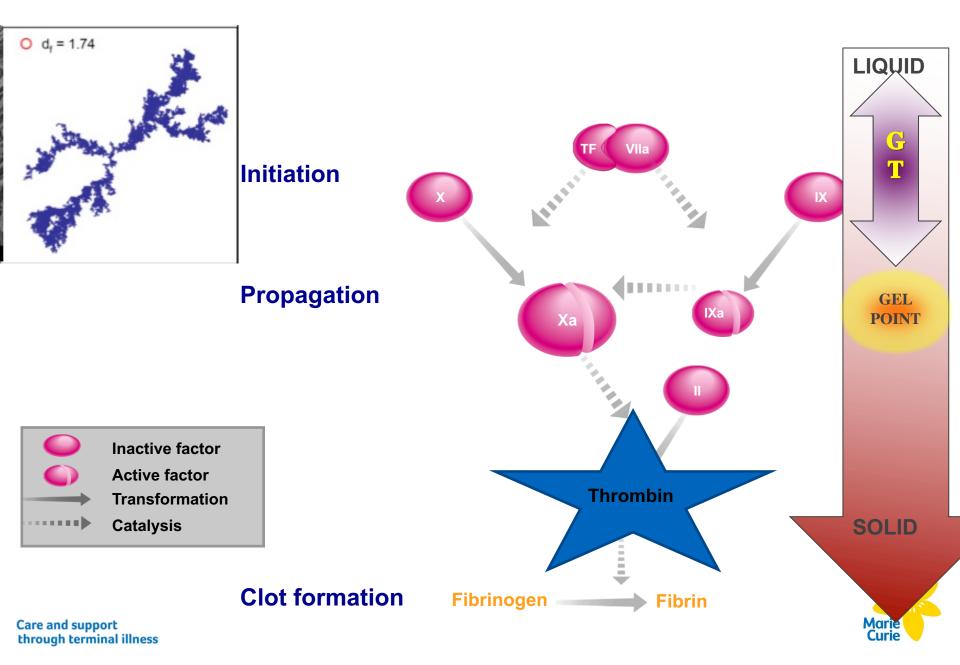
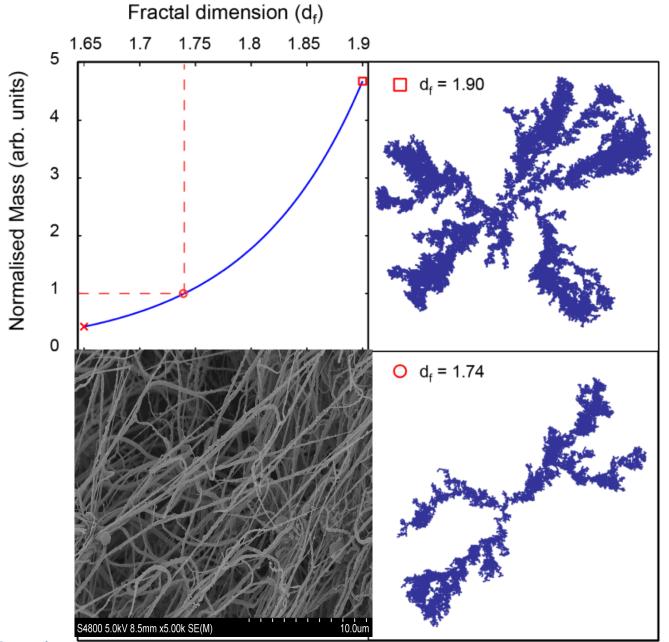
Cancer Associated Thrombosis An update.

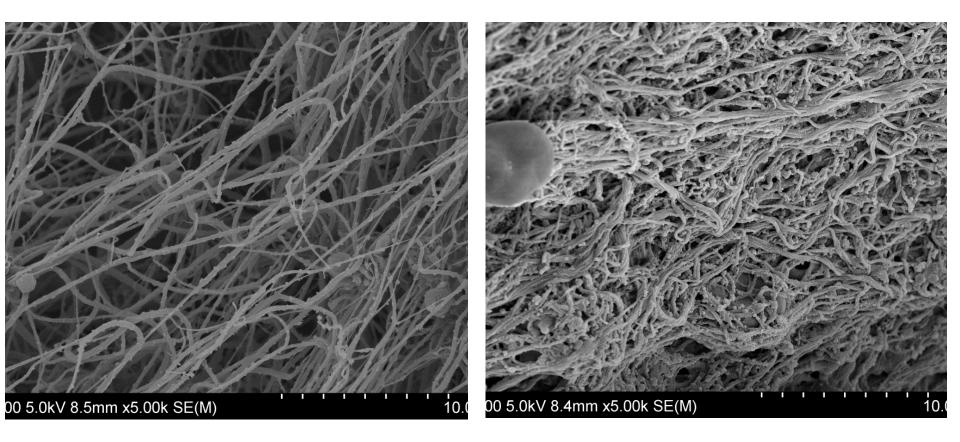
Simon Noble Marie Curie Professor of Supportive and Palliative Medicine Marie Curie Palliative Care Research Centre Cardiff University





Care and support through terminal illness

The coagulation pathway

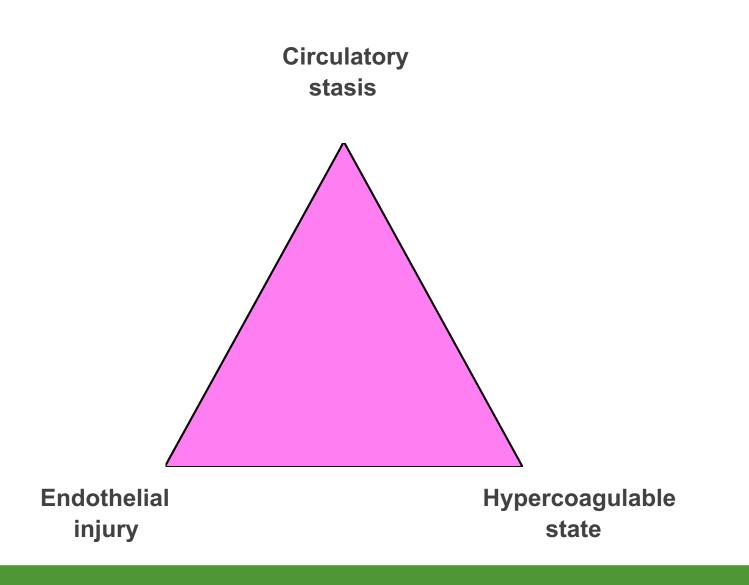

Lung cancer

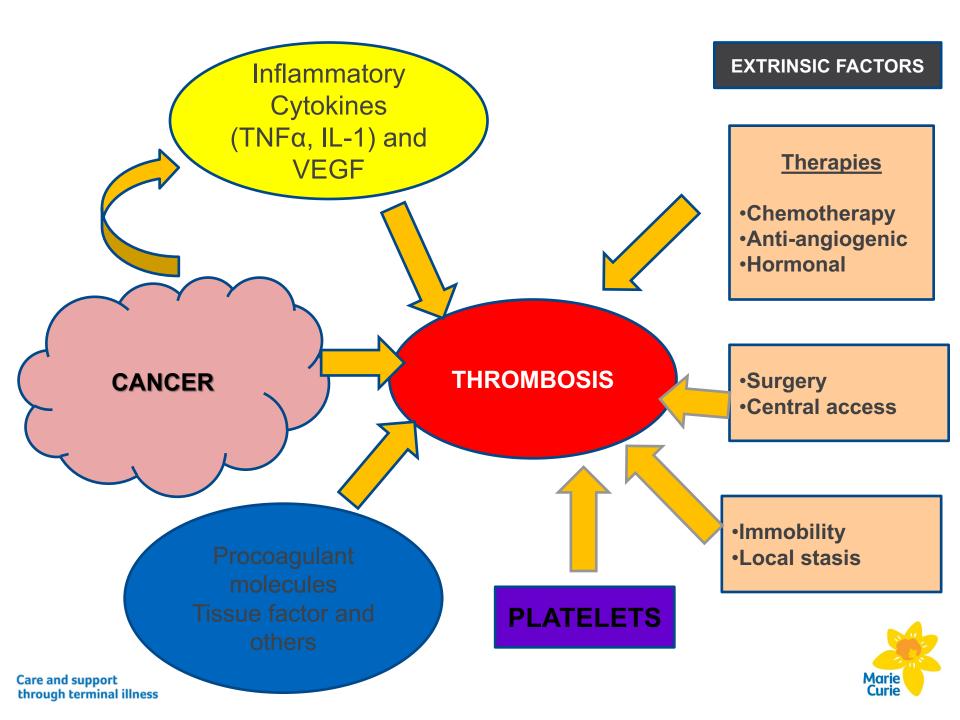
Non-cancer

Care and support through terminal illness

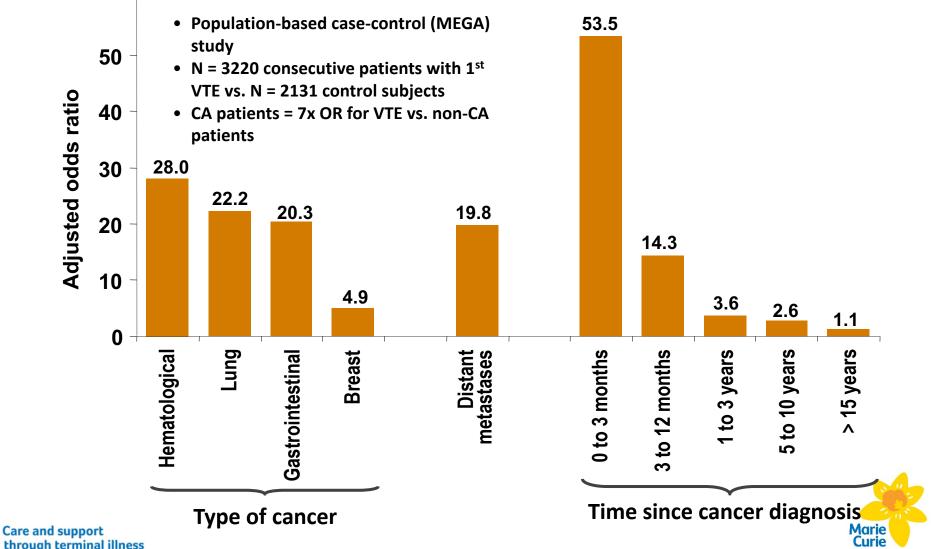
Electron microscopy

4

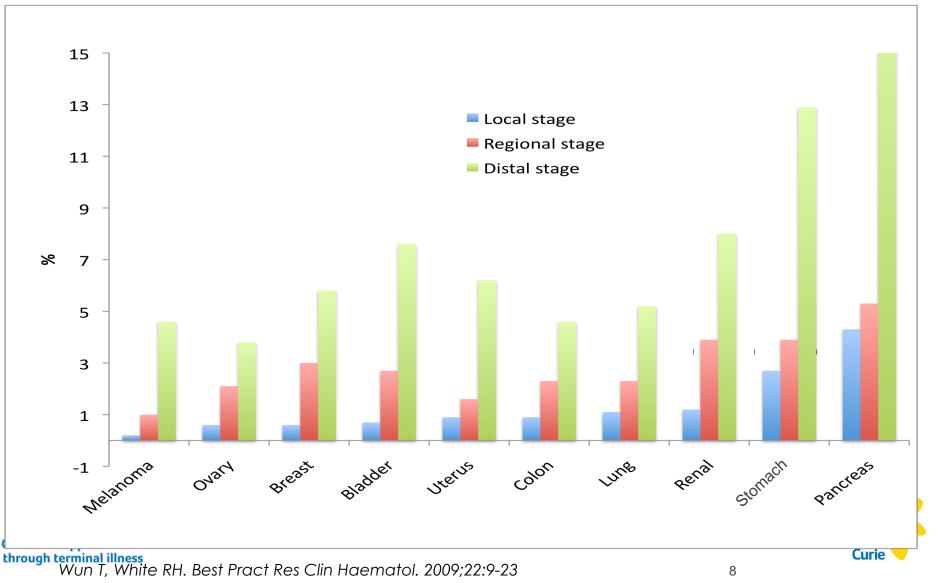

Healthy blood


Blood from patient with stage IV lung cancer

Marie Curie


Care and support through terminal illness

Virchow's triad



Effect of Malignancy on Risk of Venous Thromboembolism (VTE)

through terminal illness Silver In: The Hematologist - modified from Blom et al. JAMA 2005;293:715.

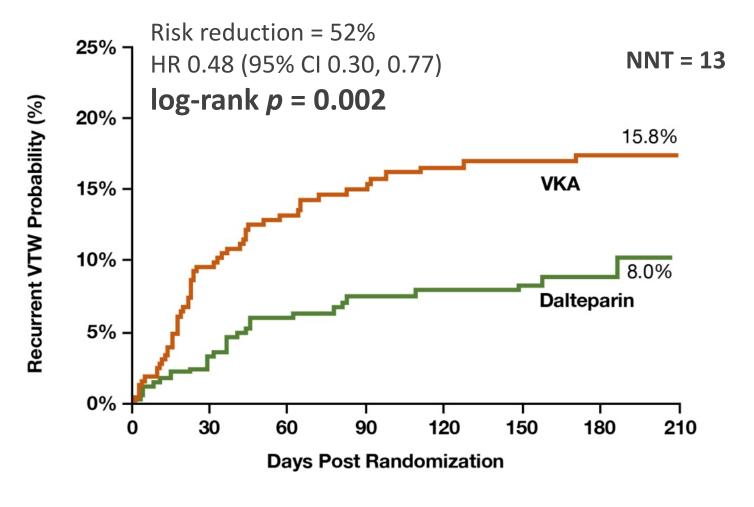
Incidence of symptomatic CAT according to the cancer type and stage

Treatment impact on VTE Incidence In Various Tumors

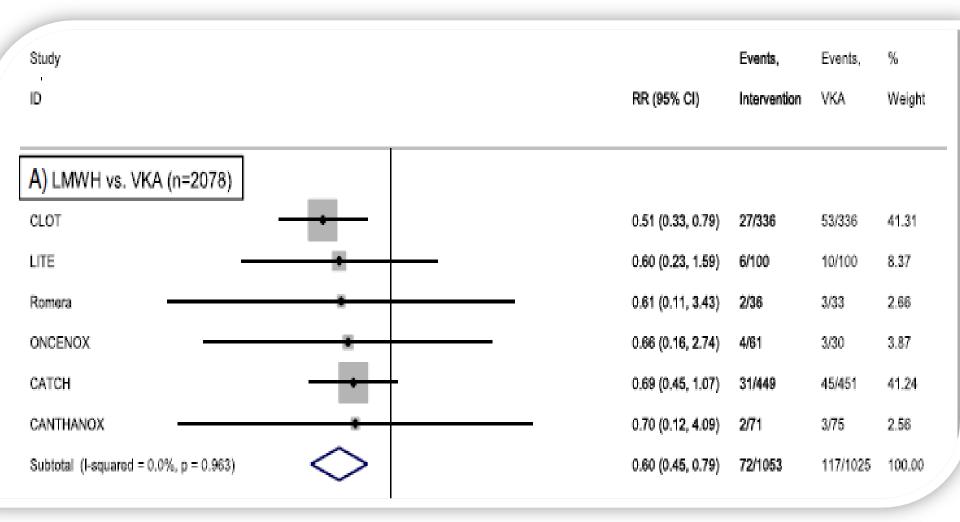
Oncology Setting	VTE Incidence
Breast cancer (Stage I & II) w/o further treatment	0.2%
Advanced cancer (1-year survival=12%)	9%
High-grade glioma	26%
Multiple myeloma	3-5%
Renal cell carcinoma	43%
Solid tumors (anti-VEGF + chemo)	47%

Treatment impact on VTE Incidence In Various Tumors

VTE Incidence
0.2%
2%
8%
9%
26%
3-5%
43%
47%


Treatment impact on VTE Incidence In Various Tumors

Oncology Setting	VTE Incidence
Breast cancer (Stage I & II) w/o further treatment	0.2%
Breast cancer (Stage I & II) w/ chemo	2%
Breast cancer (Stage IV) w/ chemo	8%
Advanced cancer (1-year survival=12%)	9%
High-grade glioma	26%
Multiple myeloma	3 5%
Multiple myeloma (thalidomide + chemo)	28%
Renal cell carcinoma	43%
Solid tumors (anti-VEGF + chemo)	47%



The CLOT Trial Primary outcome: VTE recurrence

HR = hazard ratio; NNT = number needed to treat; VKA = vitamin K antagonist; VTE = venous thromboembolism Care and support through terminal illness Lee AY et al. N Engl J Med 2003;349(2):146–153.

LMWH vs warfarin meta analysis

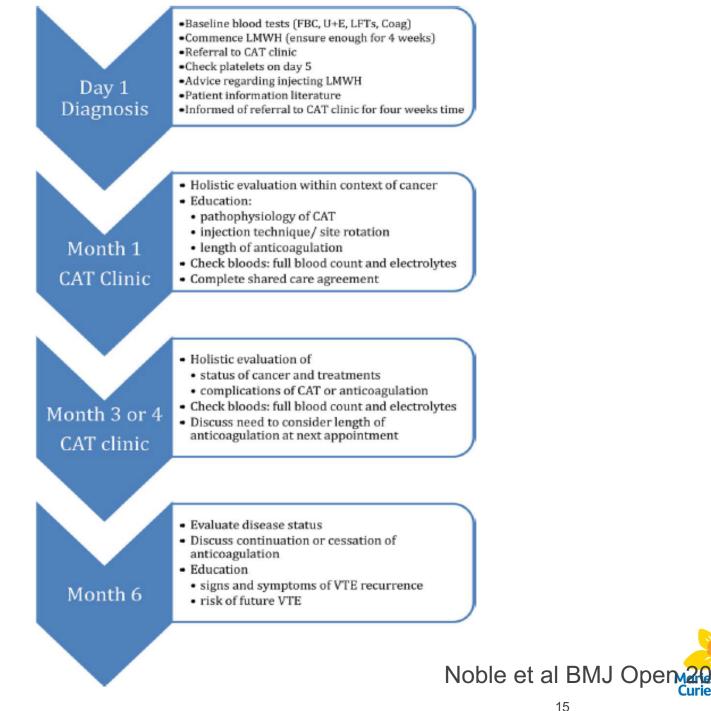
Florian Posch et at, Thrombosis Research 136 (2015) 582-589

Care and support through terminal illness

Guideline recommendations

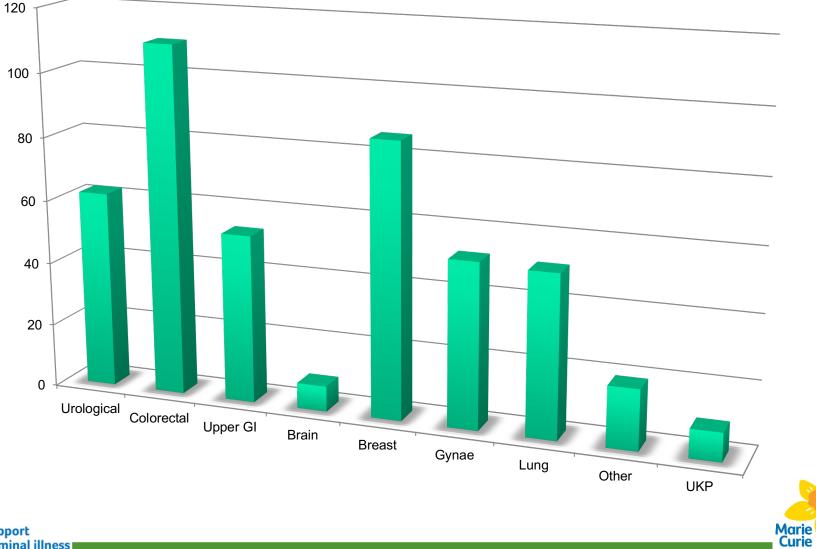
Guideline recommendations:

Standard of treatment for cancer-associated thrombosis is three to six months LMWH


(Grade A)

In patients with ongoing active cancer, consideration should be given to indefinite anticoagulation but decision should be made on a case by case basis, taking into consideration bleeding risk and patient preference.

(Grade D)


3 to 6 months then VKA or LIVIVVH until DVT = deep vein thrombosis, MWH = low molecular weight henarin: PF = pulmonary embolism; VKA = vitamin K antagonist

Care and support through terminal illness

Scope of patients

Patient spread

44% metastatic

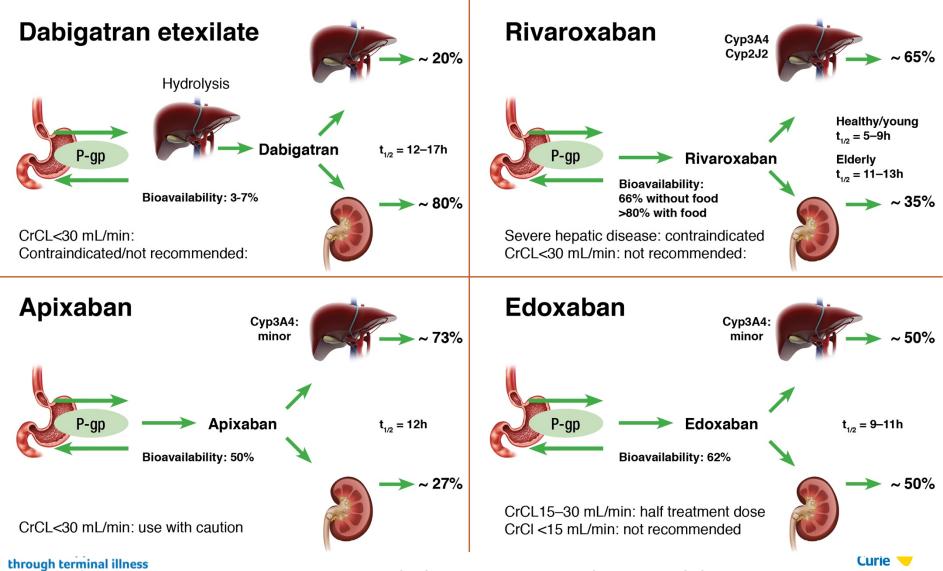
60% during chemotherapy (majority palliative) 59% known to specialist palliative care services

Need for specialist input

334 CLOT regime

124 (27%) non CLOT

- Bleeding/ risk of bleeding
- Thrombus progression/ recurrence
- Renal impairment (EGFR<25)
- Intolerant injections
- Extremes of bodyweight



Carrier M, Khorana AA, Zwicker JI, Noble S, Lee AYY Management of challenging cases of patients with cancer-associated thrombosis including recurrent thrombos and bleeding: guidance from the SSC of the ISTH. *Journal Thromb and Haem* 2013 September; 11(9) 1760-65

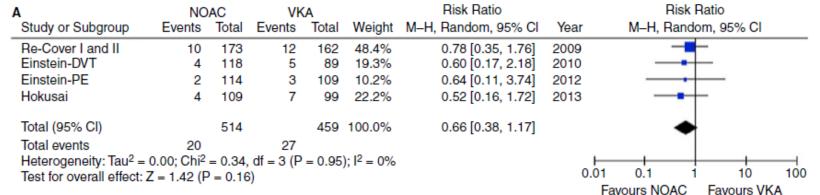
DOAC Pharmacology

Adapted from: Heidbuchel H et al. Europace 2013; U.S., Canadian Prescribing Information CrCI = creatinine clearance

VTE treatment studies - new oral anticoagulants

	Hokusai-VTE	EINSTEIN-DVT EINSTEIN-PE	AMPLIFY	RE-COVER I RE-COVER II
Drug	Edoxaban▼	Rivaroxaban▼	Apixaban	Dabigatran
Study design	Double-blind	Open-label	Double-blind	Double-blind
Heparin lead-in	At least 5 days	None	None	At least 5 days
Dose	60 mg qd 30 mg qd (CrCl, bw, P-gp)	15 mg bid x 3 wk then 20 mg qd	10 mg bid x 7 days then 5 mg bid	150 mg bid
Non-inferiority margin	1.5	2.0	1.8	2.75
Sample size	8,292	EINSTEIN-DVT 3,449 EINSTEIN-PE 4,832	5,400	RE-COVER I 2,564 RE-COVER II 2,568
Treatment duration	Flexible 3 to 12 months	Pre-specified 3, 6, or 12 months	6 months	6 months

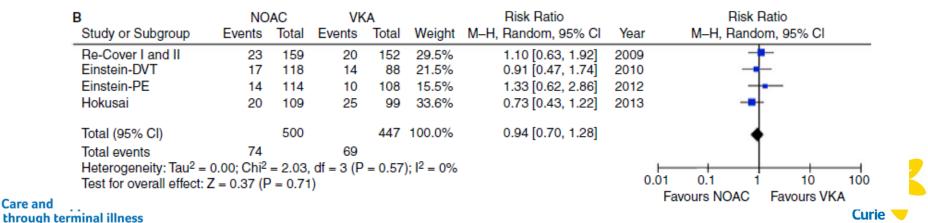
Marie Curie


Please note that there are no head to head RCTs between the NOACs. Results should not be directly compared because of important differences in the pharmacologic properties, the doses used, the patient populations, the guality of warrahim management or other aspects of the trial designs.

RCT	Total studied population	Patients with cancer
EINSTEIN Acute DVT	Rivaroxaban = 1731	Rivaroxaban = 6.8%
	Enox/VKA= 1718	Enox/VKA = 5.2%
EINSTEIN DVT extension	Rivaroxaban= 602	Rivaroxaban = 4.5%
	placebo= 594	Placebo = 4.4%
EINSTEIN-PE	Rivaroxaban= 2419	Rivaroxaban = 4.7%
	Enox/VKA= 2413	Enox/VKA= 4.5%
RECOVER	Dabigatran = 1274	Dabigatran = 5%
	VKA = 1265	VKA = 4.5%

Care and support through terminal illness Marie Curie

DOACs in the treatment of CAT


Recurrent VTE

Pooled incidence rates: 4.1% (2.6–6.0) for DOACs 6.1% (4.1–8.5) for VKAs [RR 0.66 (0.38–1.2)]

Recurrent VTE warfarin Lee A *et al.* 2003: 16% Meyer G *et al.* 2002 17%

Major bleeding or CR-NMB

van der Hulle T et al. J Thromb Haemost 2014. CRNMB = clinically-relevant non-major bleediag

Proportion of metastatic patients

STUDY	LMWH	WARFARIN	RIVAROXABA N
CLOT	66%	69%	
LITE	47%	36%	
CATCH	55%	54%	
ONCENOX	54%	52%	
EINSTEIN DVT/PE		26%	19%
ough terminal illness			Curie

ORIGINAL ARTICLE

Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism

Gary E. Raskob, Ph.D., Nickvan Es, M.D., Peter Verhamme, M.D., Marc Carrier, M.D., Marcello Di Nisio, M.D., David Garcia, M.D., Michael A. Grosso, M.D., Ajay K. Kakkar, M.B., B.S., Michael J. Kovacs, M.D., Michele F. Mercuri, M.D., Guy Meyer, M.D., Annelise Segers, M.D., Minggao Shi, Ph.D., Tzu-Fei Wang, M.D., Erik Yeo, M.D., George Z hang, Ph.D., Jeffrey I. Zwicker, M.D., Jeffrey I. Weitz, M.D., and Harry R. Büller, M.D., for the Hokusai VTE Cancer Investigators*

ABSTRACT

BACEGEOUND

Low-molecular-weight heparin is the standard treatment for cancer-associated venous thromboembolism. The role of treatment with direct oral anticoagulant agents is unclear.

METHODS

In this open-label, noninferiority trial, we randomly assigned patients with cancer who had acute symptomatic or incidental venous thromboembolism to receive either low-molecular-weight heparin for at least 5 days followed by oral edoxaban at a dose of 60 mg once daily (edoxaban group) or subcuraneous dalreparin at a dose of 200 IU per kilogram of body weight once daily for 1 month followed by dalreparin at a dose of 150 IU per kilogram once daily (dalreparin group). Treatment was given for at least 6 months and up to 12 months. The primary outcome was a composite of recurrent venous thromboembolism or major bleeding during the 12 months after randomization, regardless of treatment duration.

RESULTS

Of the 1050 patients who underwent randomization, 1046 were included in the modfied intention-to-treat analysis. A primary-outcome event occurred in 67 of the 522 patients (12.8%) in the educaban group as compared with 71 of the 524 patients (13.5%) in the daleparin group (hazard ratio, 0.97; 95% confidence interval [C1], 0.70 to 1.36; P=0.006 for noninfedority; P=0.87 for superiority). Recurrent venous thromboembolism occurred in 41 patients (7.9%) in the educaban group and in 59 patients (11.3%) in the daleparin group (difference in risk, -3.4 percentage points; 95% C1, -7.0 to 0.2). Major bleeding occurred in 36 patients (6.9%) in the educaban group and in 21 patients (4.0%) in the daleparin group (difference in risk, 2.9 percentage points; 95% C1, 0.1 to 5.6).

CONCLUSIONS

Oral edotaban was noninferior to suboataneous dalteparin with respect to the composite outcome of recurrent venous thromboembolism or major bleeding. The rate of recurrent venous thromboembolism was lower but the rate of major bleeding was higher with edotaban than with dalteparin. (Bunded by Daiichi Sankyo; Hokusai VTE Cancer ClinicalTrials.gov number, NCT02073682.)

From the University of Oklahoma Health Sciences Center, College of Public Health, Oklahoma City (G.E.R.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam (N.E., H.R.B.), and ITREAS, Academic Research Organization (A.S.) --- both in Amsterdam; the Department of Vascular Medicine and Hemostasis, University Hospitals Leaven, Leaven, Belgium (FV.); Ottawa Hospital Research Institute, Ottawa (M.C.), London Health Sciences Centre-Victoria Hospital, London, ON (M.J.K.), University Health Network, University of Toronto, Toronto (5.Y.), and McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (J.I.W.) - all in Canada; the Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieli, Italy (M.D.N.); the Department of Medicine, Division of Hematology, University of Washington, Seattle (D.G.); Daiichi Sankyo Pharma Development, Basking Ridge NJ (MA.G., M.F.M., M.S., G.Z.); Thrombosis Research Institute and University College London, London (A.K.K.); the Department of Respiratory Disease. Hôpital Européen Georges-Pompidou, As-sistance Publique-Hôpitaux de Paris, Paris (G.M.); the Department of Internal Medicine, Division of Hematology, Ohio State University Weather Medical Center, Columbus (T.-FW.); and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston (J.I.Z.). Address reprint requests to Dr. Raskob at the University of Oklahoma Health Sciences Center, College of Public Health, BOL NE 13th St, Oklahoma City, OK 73104, or at gany-rankologi outric edu.

*A complete list of Hokusai VTE Cancer investigators is provided in the Supplementary Appendix, available at NGM.org.

This article was published on December 12, 2017, at NEJM.org.

DOI: 10.1056/NEJMox1311948 copyrght @ 2017 Metachandih Medical Scorty. Marie

25

ORIGINAL ARTICLE

Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism

Sav E. Raskoh, Ph.D., Nicky an Es. M.D., Pater Verhamme, M.D.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism

Gary E. Raskob, Ph.D., Nick van Es, M.D., Peter Verhamme, M.D., Marc Carrier, M.D., Marcello Di Nisio, M.D., David Garcia, M.D., Michael A. Grosso, M.D., Ajay K. Kakkar, M.B., B.S., Michael J. Kovacs, M.D., Michele F. Mercuri, M.D., Guy Meyer, M.D., Annelise Segers, M.D., Minggao Shi, Ph.D., Tzu-Fei Wang, M.D., Erik Yeo, M.D., George Zhang, Ph.D., Jeffrey I. Zwicker, M.D., Jeffrey I. Weitz, M.D., and Harry R. Büller, M.D., for the Hokusai VTE Cancer Investigators*

CONCLUSIONS

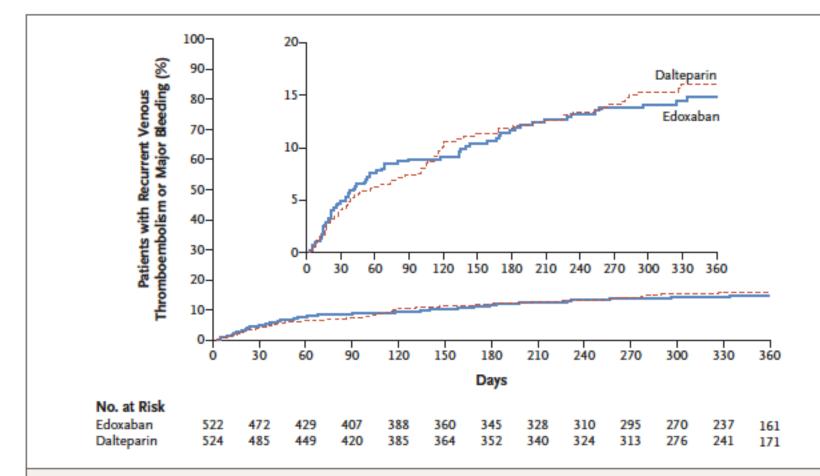
Oral edoxaban was noninferior to subcutaneous dalteparin with respect to the composite outcome of recurrent venous thromboembolism or major bleeding. The rate of recurrent venous thromboembolism was lower but the rate of major bleeding was higher with edoxaban than with dalteparin. (Runded by Dalichi Sankyo; Hokusai VTE Cancer ClinicalTrials.gov number, NCT020/3682.)

*A complete list of Hokusai VTE Cancer investigators is provided in the Supplementary Appendix, available at NEJM.org.

This article was published on December 12, 2017, at NEJM.org.

1

DOI: 10.1056/NEJMon1311348 copyrghi @ 2017 Metachandia Makal soody.


Care and support through terminal illness

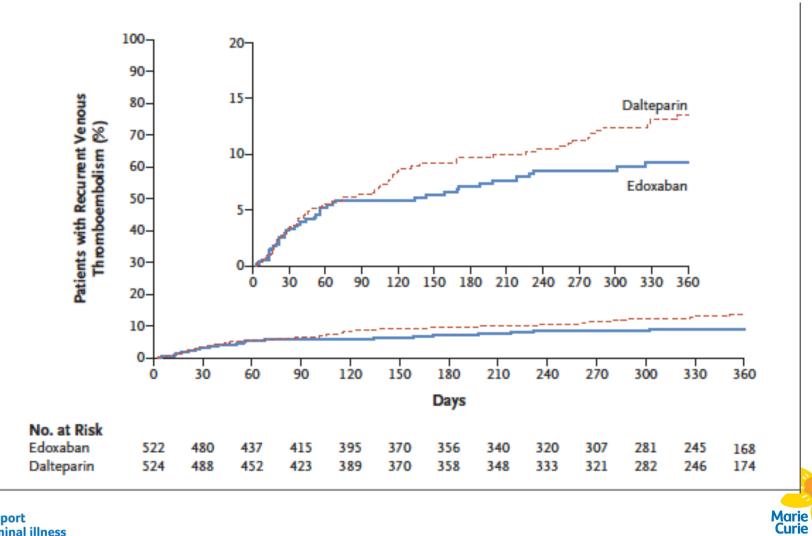
26

N INCLUMED NUM.ORG

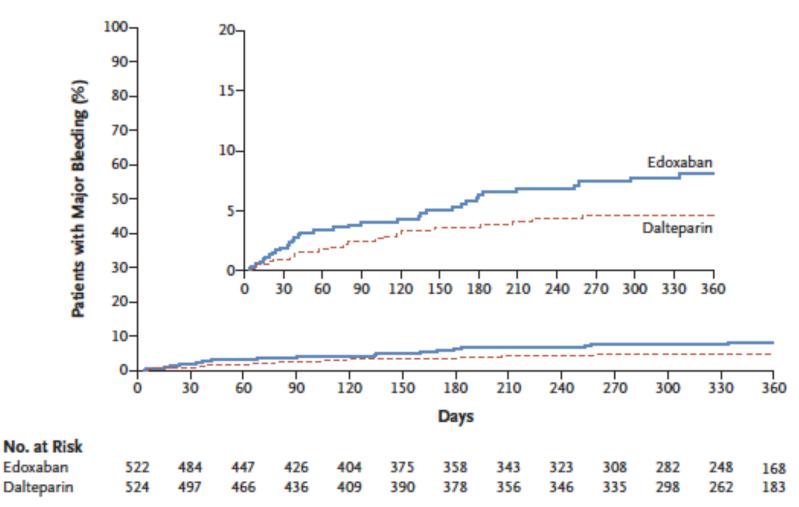
The New England Journal of Medicine Downloaded from nejm.org on January 5, 2018. For personal use only. No other uses without permission. Copyright © 2017 Massachusetts Medical Society. All rights reserved.

Primary end point

Figure 2. Kaplan-Meier Cumulative Event Rates for the Primary Outcome.


The primary outcome was a composite of recurrent venous thromboembolism or major bleeding. The inset shows the same data on an enlarged y axis.

Care and support through terminal illness


Recurrent VTE

А

Care and support through terminal illness

Bleeding

29

В

Care and support through terminal illness

Appendix: page 16/32

	Dose Adj and Bleed Bisk (IXRS) Dose Adj w/ Bid Bisk Dose Adj w/out Bid Risk Net Dose Adj w/ Did Risk Net Dose Adj w/out Bid Risk	99 16 (16.2) 22 6 (26.1) 331 44 (13.3) 69 1 (1.4)	38 14 (14.3) 19 2 (10.5) 334 43 (12.9) 73 12 (16.4)	-	
	Number of Bleeding Bisk (IXRS) 1 2 3 3 3=4	92 7 (7.6) 148 12 (8.1) 174 26 (14.9) 89 19 (21.3) 19 3 (15.8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0878	
	Surg 290ks Prior to Band (IXRS) Yes Ho	16 2 (12.5) 506 65 (12.8)	15 2 (13.3) 509 69 (13.6)		++
	Antiplatelet Agts at Rand (IXRS) Yes No	26 5 (19.2) 196 62 (12.5)	31 5 (16.1) 493 66 (13.4)	0.6103	
	Brain Tumor/Hetas at Rand (IXRS) Tes Bo	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	43 0 (10.6) 481 63 (13.1)	0.6766	Here I
	Netastatic Disease at Rnd (IXRS) Tes No	300 42 (14.0) 222 25 (11.3)	317 46 (14.5) 207 25 (12.1)	0.8558	1
	Reg Adv Cancer at Rand (13085) Tes Ho	273 40 (14.7) 249 27 (10.8)	267 31 (11.6) 257 40 (15.6)	0.0303	+++
\langle	Gastroint Cancer at Rand (IXRS) Yes No	136 26 (19.1) 386 41 (10.6)	125 18 (14.4) 399 53 (13.3)	0.1810	
	Urothelini Cancer at Rand (IXRS) Yes	38 9 (23.7)	31 5 (16.1)	0.4016	•
	No.	184 58 (12.0)	493 66 (13.4)		H.
	Avastin Use at Rand (IXRS) Yes No	19 3 (15.8) 503 64 (12.7)	30 7 (23.3) 494 64 (13.0)	0.6352	
	Survival in Study Died<3 Months Alive and Early Disc<3 Nonths Stay in Study>=3 Months	80 15 (18.8) 8 1 (12.5) 434 51 (11.8)	71 11 (15.5) 8 1 (12.5) 445 59 (13.3)		
	Type of Cancer at Rand B Solid Tumor Maematological Malignancy Solid Tumor and Haemat Malig	465 61 (13.1) 56 5 (8.9) 1 1 (100.0)	467 65 (13.9) 55 6 (10.9) 2 0	e	
	Active Cancer at Rand # Yes No	513 66 (12.9) 9 1 (11.1)	$511 69 (13.5) \\ 13 2 (15.4)$	-	H-1
	Distant Hetastasis at Rand # Yes No	274 36 (13.1) 192 26 (13.5)	280 42 (15.0) 109 23 (12.2)	0.6050	
	Receiving Cancer Trt at Band # Yes No	374 42 (11.2) 148 25 (16.9)	383 45 (11.7) 141 26 (18.4)	0.9282	H=
	Recurring Cancer at Rand # Yes No	163 25 (15.3) 359 42 (11.7)	152 24 (15.8) 372 47 (12.6)	0.0243	
	Cancer Cured # Yes No	125 10 (8.0) 397 57 (14.4)	114 12 (10.5) 410 59 (14.4)	0.4374	
	Baseline EC06	155 14 (9.0)	148 17 (11.5)	0.3911	Tel Tel T
	0 1 5=2	155 14 (9.0) 243 38 (15.6) 123 15 (12.2)	148 17 (11.5) 246 33 (13.4) 124 21 (16.9)		
	Init Nep Dur On/Aft Rend Wene <=5 days > 5 days	5 0 449 55 (12.2) 68 12 (17.6)	2.2	-	
	<= Median	311 40 (12.9) 206 27 (13.1)	5.5		
	> Median <= 25th Percentile				
	>25-50th Percentile >50-75th Percentile >75th Percentile	158 13 (8.2) 153 27 (17.6) 136 15 (10.9) 68 12 (17.6)	11		
	Heparin Use Prior to Rand Yes Bo	393 50 (12.7) 129 17 (13.2)	412 58 (14.1) 112 13 (11.6)	0.5564	

Care and support through terminal illness

Appendix: page 16/32

Dose Adj and Eleed Bisk (IXRS) Dose Adj w/ Bid Hisk Dose Adj w/out Bid Risk Bot Dose Adj w/ Did Risk Bot Dose Adj w/ Did Risk	99 16 (16.2) 23 6 (26.1) 331 44 (13.3) 69 1 (1.4)	98 14 (14.3) 19 2 (10.5) 334 43 (12.9) 73 12 (16.4)		
Number of Bleeding Risk (IXRS) 0 2 2 3 3 3-4	92 7 (7.6) 148 12 (8.1) 174 26 (14.9) 89 19 (21.3) 19 3 (15.8)	92 14 (15.2) 151 15 (9.9) 159 25 (15.7) 98 11 (11.2) 24 6 (25.0)	0.0878	
Surg 290ks Prior to Rand (IXES) Yes No	16 2 (12.5) 506 65 (12.8)	15 2 (13.3) 509 69 (13.6)		H-1
Antiplatelet Agts at Rand (IXRS) Yes No	26 5 (19.2) 496 62 (12.5)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6103	
Brain Tumor/Metas at Rand (IXRS) Tes No	31 6 (19.4) 491 61 (12.4)	43 0 (18.6) 481 63 (13.1)	0.6766	
Netastatic Disease at Hnd (IXHS) Yes He	300 42 (14.0) 222 25 (11.3)	317 46 (14.5) 207 25 (12.1)	0.8558	
Reg Adv Cancer at Rand (IXRS) Yes	273 40 (14.7) 249 27 (10.8)	267 31 (11.6) 257 40 (15.6)	0.0305	He I

GI cancers: 13.1% major bleeding Urothelial cancers 8% major bleeding

Receiving Cancer Trt at Band # Yes No	374 42 (11.2) 148 25 (16.9)	383 45 { 11.7} 141 26 { 18.4}	0.9282	
Recurring Cancer at Rand # Yes No	163 25 (13.3) 359 42 (11.7)	152 24 (15.8) 372 47 (12.6)	0.0243	
Cancer Cured # Yes No	125 10 (8.0) 397 57 (14.4)	114 12 (10.5) 410 59 (14.4)	0.4374	
Baseline ECOG D 1 D=2	155 14 (9.0) 243 38 (15.6) 123 15 (12.2)	148 17 (11.5) 246 33 (13.4) 124 21 (16.9)	0.3911	
Init Hop Dur On/Aft Rand Mone <-5 days > 5 days	5 0 449 55 (12.2) 68 12 (17.6)	5.1	-	
<= Median > Nedian	311 40 (12.9) 206 27 (13.1)	5 5	2	
<= 25th Percentile >25-30th Percentile >50-75th Percentile >75th Percentile	158 13 (8.2) 153 27 (17.6) 138 15 (10.9) 68 12 (17.6)	1	-	
Heparin Use Prior to Rand Yes Bo	393 50 (12.7) 129 17 (13.2)	412 58 (14.1) 112 13 (11.6)	0.5564	

Care and support through terminal illness

Select-D

Rivaroxaban vs dalteparin

400 patients: 90% metastatic disease, 83% chemo

4% vs 11% (95% CI 7-17%) recurrent VTE 4% vs 3% major bleeds 11% vs 2% CRNMB

Drug interations

	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Interaction effect*	P-glycoprotein	P-glycoprotein CYP3A4	P-glycoprotein CYP3A4	P-glycoprotein
	Cyclosporine	Cyclosporine	Cyclosporine	Cyclosporine
	Tacrolimus	Tacrolimus	Tacrolimus	Tacrolimus
Increases	Tamoxifen	Tamoxifen	Tamoxifen	Tamoxifen
DOAC plasma levels [†]	Lapatinib	Lapatinib	Lapatinib	Lapatinib
IEVEIS'	Nilotinib	Nilotinib	Nilotinib	Nilotinib
	Sunitinib	Sunitinib	Sunitinib	Sunitinib
		Imatinib	Imatinib	
Reduces	Dexamethasone	Dexamethasone	Dexamethasone	Dexamethasone
DOAC plasma	Doxorubicin	Doxorubicin	Doxorubicin	Doxorubicin
levels [‡]	Vinblastine	Vinblastine	Vinblastine	Vinblastine

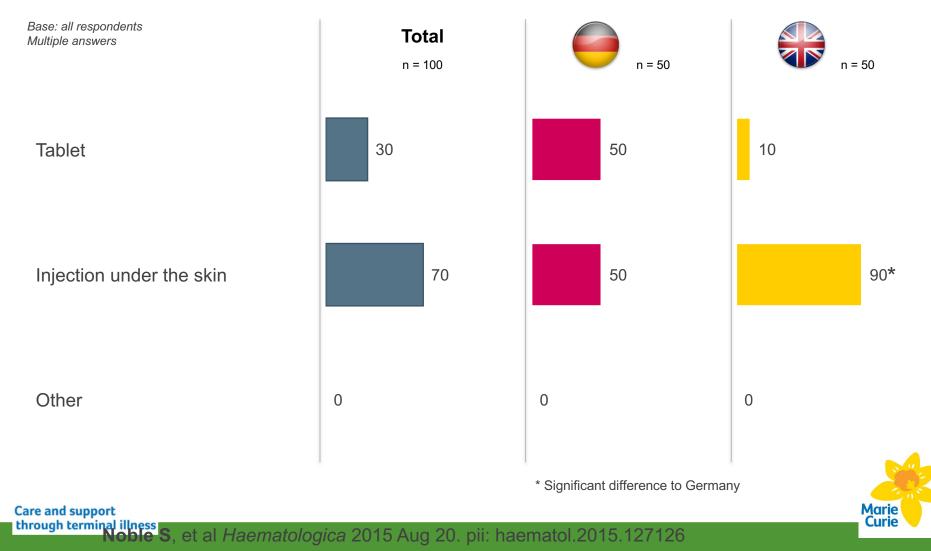
*Clinicians should consult pharmacist; †Drugs that inhibit P-GP or CYP3A4 can increase DOAC levels; ‡Drugs that induce P-GP or CYP3A4 can lower DOAC levels.

CYP3A4 = cytochrome P450 3A4; DOAC = direct oral anticoagulant Care and support through terminal illness Lee, AY, Peterson EA. *Blood* 2013.

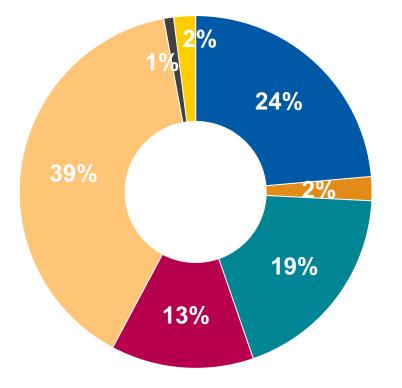
Special circumstances

	LMWH	DOACs
Extremes of body weight	Commonly used	Not recommended
Chemotherapy	Few drug-drug interactions	Avoid in strong inducers/ inhibitors of p-GP or CYP3A4
Renal impairment	Dose adjustment	Dose adjustment
^s Thrombocytopenia	Dose adjustment	Dose adjustment

	LMWH	DOACs
Heparin induced thrombocytopenia	Contraindicated	Not contraindicated
Upper GI/ urothelial cancers	Commonly used	Increased bleeding risk: avoid
Needle phobia	Not advised	Acceptable
₅ Liver disease	Used with caution	Used with caution
are and support nrough terminal illness		Curie


Renal impairment

	Apixaban	Edoxaban	Dabigatran	Rivaroxaban
Renal Clearance	27%	50%	80%	35%
CrCL <30ml/m in	Use with caution	Dose reduction	Do not use	Do not use


Around one third of patients are currently treated with oral medication for their VTE

Administration of medication (%)

Interference with cancer treatment is the most important attribute to patients, followed by efficacy of VTE therapy

Relative importance of attributes* - Total

- Efficacy
- Risk of minor bleeding
- Risk of major bleeding
- Administration form
- Interference with cancer treatment
- Frequency of administration
- Monitoring through blood test

* Impact / weight of each attribute on the overall preference / choice behavior

Curie

Care and support

through terminal illness Noble S, et al Haematologica 2015 Aug 20. pii: haematol.2015.127126

To conclude

- 1. DOACs non inferior to LMWH for CAT
- 2. Better in preventing VTE recurrence
- 3. Increased bleeding risk (GI/ urothelial)
- 4. Drug drug interations

Care and support through terminal illness